
Canonical Logic Programs are Succinctly Incomparable with Propositional
Formulas

Yuping Shen and Xishun Zhao�

Institute of Logic and Cognition
Department of Philosophy

Sun Yat-sen University
510275 Guangzhou, P.R. China

fshyping, hsszxsg@mail.sysu.edu.cn

Abstract

Canonical (logic) programs (CP) refer to the class of nor-
mal programs (LP) augmented with connective not not, and
are equally expressive as propositional formulas (PF). In this
paper we address the question of whether CP and PF are suc-
cinctly incomparable. Our main result shows that the PAR-
ITY problem only has exponential CP representations, while
it can be polynomially represented in PF. In other words,
PARITY separates PF from CP. Simply speaking, this means
that exponential size blowup is generally inevitable when
translating a set of PF formulas into a (logically) equiva-
lent CP program (without introducing new variables). Fur-
thermore, since it has been shown by Lifschitz and Razborov
that there is also a problem which separates CP from PF (as-
suming P * NC1=poly), it follows that the two formalisms
are indeed succinctly incomparable.

1 Introduction
The relationship between (logic) programs under answer
set semantics (ASP) (Lifschitz 2008; Brewka, Eiter, and
Truszczynski 2011) and propositional satisfiability (SAT)
(Biere et al. 2009) gains a lot of attention in the literature.
In 2006, Lifschitz and Razborov proved that an exponential
size blowup is generally inevitable when translating a nor-
mal program (LP) to a (logically) equivalent set of propo-
sitional formulas (PF) (without introducing additional vari-
ables). More precisely, they showed that (a variant of) the P-
complete problem PathSystem (PATH) has polynomial size
LP representations, however, it cannot be polynomially rep-
resented in PF (assuming P * NC1=poly) (Lifschitz and
Razborov 2006), i.e., PATH separates LP from PF.

As noted in (Lifschitz and Razborov 2006), PF can be
considered as a special case of the class of (nondisjunctive)
nested programs (NLP, without classical negation :) (Lifs-
chitz 1999). Therefore, NLP is stronger than PF in terms of
the succinctness criterion (or the “comparative linguistics”
approach) (Gogic et al. 1995):

That is, we consider formalism A to be stronger than
formalismB if and only if any knowledge base (KB) in
B

2 Background
Canonical Programs
The following notations are adopted from (Lifschitz 1999;
Lee 2005). A rule element e is defined as

e := > j ? j x j not x j not not x
in which >;? are 0-ary connectives, x is a (boolean) vari-
able (or an atom) and not is a unary connective3. A (nondis-
junctive canonical) rule is an expression of the form

H B (1)
where the head H is either a variable or the connective ?,
and the body B is a finite set of rule elements. A canonical
program � is a finite set of rules. E.g., the following is a
canonical program:

x1 not not x1;
x2 not not x2;

x3 not x1; not x2;
x3 x1; x2:

(2)

A canonical program � is normal if it contains no connec-
tives not not. A normal program � is basic if it contains no
occurrences of connective not.

The satisfaction relation j= between a set of variables I
and a rule element is defined as follows:
� I j= > and I 2 ?,
� I j= x iff I j= not not x iff x 2 I ,
� I j= not x iff x =2 I .

Say I satisfies a set of rule elements B if I satisfies each
rule element in B. We say I is closed under a program
�, if I is closed under every rule in �, i.e., for each rule
H B 2 �, I j= H whenever I j= B. Let � be a basic
program and let Cn(�) denotes the minimal set (in terms of
set inclusion) closed under �, we say I is an answer set of
� if I = Cn(�). Note that a basic program has exactly one
answer set.

The reduct �I of a program � w.r.t. I is a set of rules
obtained from � via: (i) Replacing each not not x with >
if I j= x, and with ? otherwise; (ii) Replacing each not x
with > if I 2 x, and with ? otherwise. Observe that �I

must be a basic program. We say I is an answer set of �
if I = Cn(�I), i.e., I is an answer set of �I . E.g., the
following single rule program:

x not not x (3)
has two answer sets ; and fxg.

For a set of rule elements B, define var(B) = fe 2
B : e is a variableg. E.g., var(fx1; not x2; not not x3g) =
fx1g. The signature sig(�) of a program � is the
set of all involved variables in �. By Ans(�) we de-
note the set of all answer sets of �. E.g., if � is
(2), then sig(�) = fx1; x2; x3g and Ans(�) =
ffx1; x2; x3g; fx1g; fx2g; fx3gg. The size j�j of � is the
number of its rules. As a convention, �n refers to a program
with signature fx1; : : : ; xng, i.e., sig(�n) = fx1; : : : ; xng.

It is easy to see that by using rules of the form (3) and
appropriate constraints of the form ? B, it is easy to
give an arbitrary set of answer sets over sig(�n), in other
words, CP has exactly the same expressive power as PF.

3By (Lifschitz 1999), not not not x can be replaced by not x.

Problem Representation and Succinctness
A (binary) string is a finite sequence of bits from f0; 1g.
A string w of length n (i.e., w 2 f0; 1gn) defines a subset
of variables fx1; : : : ; xng. E.g., 1010 stands for fx1; x3g.
Therefore, a set of variables I and a stringw can be regarded
as the same. A problem (or language) L is a set of strings.

Definition 2.1 (Problem Representation). A problem L can
be represented in a class of programs (or formulas, etc) C
(i.e., L 2 C), if there exists a sequence of programs f�ng
(n = 1; 2; : : :) in C that computes L, i.e., for every string
w 2 f0; 1gn,

w 2 L, w 2 Ans(�n):

Say L has polayL

The completion Comp(�) (Erdem and Lifschitz 2003) of
a CP program � consists of a set (or a conjunction) of PF
formulas (we slightly abuse the connective�): (i) x � ~B1 _
~B2 _ � � � _ ~Bm, where x B1; : : : ; x Bm are all rules
in � with head x, and each ~Bi is the conjunction of rule
elements in Bi with connective not replaced by :; (ii) x �
?, if x is not a head of any rule in �; (iii) : ~B, if a rule
? B is in �.
Proposition 2.1. The completion Comp(�) of an arbitrary
canonical program � is a constant depth, unbounded fan-in
circuit whose size is polynomially bounded by j�j.

It is well-known that an answer set of � is also a model of
its completion, but the inverse generally does not hold. E.g.,
the completion fx1 � :x2_(x2^x1); x2 � :x1_(x1^x2)g
of the PARITY2 program:

x1 not x2;
x1 x2; not not x1;

x2 not x1;
x2 x1; not not x2;

(4)

two-valued programs (TV) (Lifschitz 2012) are as expres-
sive as PF and NP-complete for consistency checking. But
they have a non-trivial succinctness picture, see Fig. 1.

Besides the theoretical interests, succinctness also tells
us something like “which for what is the best” in choos-
ing KR formalisms for a given application. E.g., one should
choose ASP instead of SAT (or DT) if the application in-
volves reasoning about PATH or Transitive Closure5, be-
cause the former provides compact representations to avoid
unnecessary overload. Recall that from the complexity view-
point, even one extra variable may double the search space
for intractable problems.

CP

CC

PF DT

SDTTV

NLP

*

*

*

A B :A � B

A B:∃L separates A from B

* : under assumption

*

*

*

*

Figure 1: Succinctness Pic.

In future work we
plan to establish the
missing connections in
Fig. 1, moreover, we
will consider the suc-
cinctness of more ex-
pressive formalisms like
programs with predicate
symbols or higher-order
atoms (Gebser, Schaub,
and Thiele 2007), etc.

Acknowledgement
We are grateful to the
anonymous review-
ers for their valuable
comments. Thanks
to Shiguang Feng,

Yan Zhang, Jiankun He, Guangrui Dang and Xiaolong
Liang for their helpful discussions. The research was
partially supported by NSFC Grant 61272059, MOE Grant
11JJD720020, NSSFC Grant 13&ZD186 and the Funda-
mental Research Funds for the Central Universities Grant
1409025.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Arora, S., and Barak, B. 2009. Computational Complexity:

